

CHAPTER 24

ELECTRIC POTENTIAL

PROBLEM SET

- **1)** A uniform electric field $\vec{E} = -4.20 \text{ N/C}$ î points in the negative *x* direction as shown in Fig. 23–25. The *x* and *y* coordinates of points A, B, and C are given on the diagram (in meters). Determine the differences in potential (*a*) V_{BA} , (*b*) V_{CB} , and (c) V_{CA} . $[R_{\text{1}}(A \cap B) \mid V_{BA} = 0, b] \mid V_{CB} = -29.4 \mid V, c] \mid V_{CA} = -29.4 \mid V$ $C(-3.00, 4.00)$ $-B(4.00, 4.00)$ $\xrightarrow{\bullet} A(4.00, 1.00)$ $\overline{0}$
- **2)** *** A hollow spherical conductor, carrying a net charge +Q, has inner radius r_1 and outer radius $r_2 = 2r_1$ (Fig. 23–26). At the center of the sphere is a point charge $+Q/2$. (*a*) Write the electric field strength *E* in all three regions as a function of r . Then determine the potential as a function of r , the distance from the center, for (*b*) $r > r_2$, (*c*) $r_1 < r < r_2$, and (*d*) $0 < r < r_1$.

[Answer: a) For
$$
r > r_2
$$
, $E = \frac{3Q}{8\pi\epsilon_0 r^2}$; For $r_1 < r < r_2$,
\n $E = \frac{Q}{8\pi\epsilon_0 r^2}$ b) $V = \frac{3Q}{8\pi\epsilon_0 r}$ c) $V = \frac{3Q}{8\pi\epsilon_0 r_2}$ d) $V = \frac{Q}{8\pi\epsilon_0} (\frac{1}{r_2} + \frac{1}{r})$]

- **3)** Two point charges, 3.4 µC and -2.0µC are placed 5.0 cm apart on the *x* axis. At what points along the *x* axis is (*a*) the electric field zero and (*b*) the potential zero? Let $V = 0$ at r =infinite.[Answers: a) 16 cm left of q_2 , b) 1.9 cm from **the negative charge towards the positive charge, and 7.1 cm from the negative charge away from the positive charge.]**
- **4)** A +25 μ C point charge is placed 6.0 cm from an identical +25 μ C point charge. How much work would be required by an external force to move a $+0.18 \mu C$ test charge from a point midway between them to a point 1.0 cm closer to either of the charges? **[Answer: 0.34 J]**
- **5)** *** A total charge *Q* is uniformly distributed on a thread of length *l*. The thread forms a semicircle. What is the potential at the center? (Assume $V = 0$ at large distances.)

[Answer:

 $\frac{Q}{4\varepsilon_{0}l}$

6) A thin rod of length *2l* is centered on the *x* axis as shown in Fig. 23–31. The rod carries a uniformly distributed charge *Q*. Determine the potential *V* as a function of *y* for points along the *y* axis. Let $V = 0$ at infinity. **[Answer:**

]

$$
\frac{Q}{8\pi\varepsilon_0 \ell} \left[\ln \left(\frac{\sqrt{\ell^2 + y^2} + \ell}{\sqrt{\ell^2 + y^2} - \ell} \right) \right]
$$
\n
$$
\frac{\ell}{\sqrt{\ell^2 + y^2}} \times \frac{\ell}{2\ell}
$$

7) The dipole moment, considered as a vector, points from the negative to the positive charge. The water molecule, Fig. 23–32, has a dipole moment **p** which can be considered as the vector sum of the two dipole moments \vec{p}_1 and \vec{p}_2 as shown. The distance between each H and the O is about 0.96×10^{-10} m ;the lines joining the center of the O atom with each H atom make an angle of 104° as shown, and the net dipole moment has been measured to be $p = 6.1 \times 10^{-30}$ C · m. Determine the effective charge *q* on each H atom. $[Answer: 5.2 \times 10^{-20} C]$

8) *** The electric potential in a region of space varies as $V = by/(a^2 + y^2)$. Determine **E***.* **[Answer:**

$$
\vec{\mathbf{E}} = \frac{\left[\left(y^2 - a^2\right)b}{\left(a^2 + y^2\right)^2}\hat{\mathbf{j}}\right]
$$

9) Four point charges are located at the corners of a square that is 8.0 cm on a side. The charges, going in rotation around the square, are Q , $2Q$, $-3Q$ and 2*Q*, where $Q = 3.1 \mu C$ (Fig. 23–35). What is the total electric potential energy stored in the system, relative to $U = 0$ at infinite separation?

[Answer: -7.9 J]

10) In a television picture tube (CRT), electrons are accelerated by thousands of volts through a vacuum. If a television set is laid on its back, would electrons be able to move upward against the force of gravity? What potential difference, acting over a distance of 3.5 cm, would be needed to balance the downward force of gravity so that an electron would remain stationary? Assume that the electric field is uniform. **[Answer: 2.0** \times 10⁻¹² V, the thousands of volts in **a television set move electrons upward against the force of gravity.]**