

CHAPTER 24

ELECTRIC POTENTIAL

PROBLEM SET

A uniform electric field \$\vec{E}\$ = -4.20 N/C î points in the negative x direction as shown in Fig. 23–25. The x and y coordinates of points A, B, and C are given on the diagram (in meters). Determine the differences in potential (a) V_{BA}, (b) V_{CB}, and (c) V_{CA}.
[Answer: a) V_{BA} = 0, b) V_{CB} = -29.4 V, c) V_{CA} = -29.4 V]

2) *** A hollow spherical conductor, carrying a net charge +Q, has inner radius r_1 and outer radius $r_2 = 2r_1$ (Fig. 23–26). At the center of the sphere is a point charge +Q/2. (*a*) Write the electric field strength *E* in all three regions as a function of *r*. Then determine the potential as a function of *r*, the distance from the center, for (*b*) $r > r_2$, (*c*) $r_1 < r < r_2$, and (*d*) $0 < r < r_1$.

[Answer: a) For
$$r > r_2$$
, $E = \frac{3Q}{8\pi\epsilon_0 r^2}$; For $r_1 < r < r_2$, $E=0$; For $0 < r < r_1$,
 $E = \frac{Q}{8\pi\epsilon_0 r^2}$ b) $V = \frac{3Q}{8\pi\epsilon_0 r}$ c) $V = \frac{3Q}{8\pi\epsilon_0 r_2}$ d) $V = \frac{Q}{8\pi\epsilon_0} (\frac{1}{r_2} + \frac{1}{r})$]

- 3) Two point charges, 3.4 μC and -2.0μC are placed 5.0 cm apart on the x axis. At what points along the x axis is (a) the electric field zero and (b) the potential zero? Let V = 0 at r =infinite.[Answers: a) 16 cm left of q₂, b) 1.9 cm from the negative charge towards the positive charge, and 7.1 cm from the negative charge away from the positive charge.]
- 4) A +25 μ C point charge is placed 6.0 cm from an identical +25 μ C point charge. How much work would be required by an external force to move a +0.18 μ C test charge from a point midway between them to a point 1.0 cm closer to either of the charges? [Answer: 0.34 J]
- 5) *** A total charge Q is uniformly distributed on a thread of length l. The thread forms a semicircle. What is the potential at the center? (Assume V = 0 at large distances.)

[Answer: $\frac{Q}{4\varepsilon_0 \ell}$

6) A thin rod of length 2l is centered on the x axis as shown in Fig. 23–31. The rod carries a uniformly distributed charge Q. Determine the potential V as a function of y for points along the y axis. Let V = 0 at infinity. [Answer:

$$\frac{Q}{8\pi\varepsilon_0\ell} \left[\ln\left(\frac{\sqrt{\ell^2 + y^2} + \ell}{\sqrt{\ell^2 + y^2} - \ell}\right) \right]$$

7) The dipole moment, considered as a vector, points from the negative to the positive charge. The water molecule, Fig. 23–32, has a dipole moment $\vec{\mathbf{p}}$ which can be considered as the vector sum of the two dipole moments $\vec{\mathbf{p}}_1$ and $\vec{\mathbf{p}}_2$ as shown. The distance between each H and the O is about $0.96 \times 10^{-10}m$; the lines joining the center of the O atom with each H atom make an angle of 104° as shown, and the net dipole moment has been measured to be $p = 6.1 \times 10^{-30} C \cdot m$. Determine the effective charge q on each H atom. [Answer: $5.2 \times 10^{-20} C$]

8) *** The electric potential in a region of space varies as $V = by/(a^2 + y^2)$. Determine \vec{E} . [Answer:

$$\vec{\mathbf{E}} = \frac{\left(y^2 - a^2\right)b}{\left(a^2 + y^2\right)^2}\,\hat{\mathbf{j}}$$

9) Four point charges are located at the corners of a square that is 8.0 cm on a side. The charges, going in rotation around the square, are Q, 2Q, -3Q and 2Q, where Q =3.1µC (Fig. 23–35). What is the total electric potential energy stored in the system, relative to U = 0 at infinite separation?

[Answer: -7.9 J]

10) In a television picture tube (CRT), electrons are accelerated by thousands of volts through a vacuum. If a television set is laid on its back, would electrons be able to move upward against the force of gravity? What potential difference, acting over a distance of 3.5 cm, would be needed to balance the downward force of gravity so that an electron would remain stationary? Assume that the electric field is uniform. [Answer: 2.0×10^{-12} V, the thousands of volts in a television set move electrons upward against the force of gravity.]