

ÇANKAYA UNIVERSITY PHY8 132 – PHY8IC8 II

CHAPTER 22 ELECTRIC FIELDS PROBLEM SET

1) Two negative and two positive point charges (magnitude Q = 4.15 mC) are placed on opposite corners of a square as shown in Fig. 21–54. Determine the magnitude and direction of the electric field on each charge. [Answer: $3.42 \times 10^9 \text{ N/C}$, $\theta = 225^0$ from the *x*-direction, or exactly towards the center of the square.]

2) Two point charges, $Q_1 = -25 \ \mu C$ and $Q_2 = +45 \ \mu C$ are separated by a distance of 12 cm. The electric field at the point P (see Fig. 21–58) is zero. How far from Q_1 is P?

[Answer: x=35 cm]

x	Q_1	12 cm	Q_2
•			
Р	$-25 \ \mu C$		$+45 \mu C$
Constitute 2006 Research Education, Inc.			

3) The uniformly charged straight wire in Fig. 21–29 has the length l, where point 0 is at the midpoint. Find the field at point P where λ is the charge per unit length.

[Answer: below]

4) ***Determine the direction and magnitude of the electric field at the point P shown in Fig. 21–64. The two charges are separated by a distance of 2a. Point P is on the perpendicular bisector of the line joining the charges, a distance x from the midpoint between them. Express your answers in terms of Q, x, a, and k.[Answer: below]

5) ***A thin glass rod is a semicircle of radius *R*, Fig. 21–66. A charge is nonuniformly distributed along the rod with a linear charge density given by $\lambda = \lambda_0 \sin\theta$ where λ_0 is a positive constant. Point P is at the center of the semicircle. (*a*) Find the electric field $\vec{\mathbf{E}}$ (magnitude and direction) at point P. [*Hint*: Remember $\sin(-\theta) = -\sin\theta$ so the two halves of the rod are oppositely charged.] (*b*) Determine the acceleration (magnitude and direction) of an electron placed at point P, assuming R = 1.0 cm and $\lambda_0 = 1.0 \,\mu C/m$. [Answer: a) $\vec{E} = -\frac{\lambda_0}{8\epsilon_0 R}\hat{j}$, b) $\vec{a} = 2.5 \times 10^{17} \,\text{m/s}^2\hat{j}$]

6) At what angle will the electrons in Example 21–16 leave the uniform electric field at the end of the parallel plates (point P in Fig. 21–41)? Assume the plates are 4.9 cm long and $E = 5.03 \ 10^3 \text{ N/C.}$, and $v_0 = 1.00 \times 10^7 \ m/s$. Ignore fringing of the field.

[Answer: $\theta = -23^0$]

7) An electric dipole, of dipole moment *p* and moment of inertia *I*, is placed in a uniform electric field \vec{E} . (*a*) If displaced by an angle θ as shown in Fig. 21–44 and released, under what conditions will it oscillate in simple harmonic motion? (*b*) What will be its

frequency? [Answer: a) If θ is small, so that $\sin \theta \approx \theta$, b) $f = \frac{1}{2\pi} \sqrt{\frac{pE}{I}}$]

- 8) A positive point charge $Q_1 = 2.5 \times 10^{-5} C$ is fixed at the origin of coordinates, and a negative point charge $Q_2 = -5.0 \times 10^{-6} C$ is fixed to the *x* axis at x = +2.0 m. Find the location of the place(s) along the *x* axis where the electric field due to these two charges is zero. [Answer: 1.6 m from Q_2 , 3.6 m from Q_1]
- 9) ***A large electroscope is made with "leaves" that are 78-cm-long wires with tiny 24-g spheres at the ends. When charged, nearly all the charge resides on the spheres. If the wires each make a 26° angle with the vertical (Fig. 21–72), what total charge Q must have been applied to the electroscope? Ignore the mass of the wires.[**Answer:** $Q = 4.9 \times 10^{-6} C$]

10) One type of *electric quadrupole* consists of two dipoles placed end to end with their negative charges (say) overlapping; that is, in the center is -2Q flanked (on a line) by a +Q to either side (Fig. 21–74). Determine the electric field $\vec{\mathbf{E}}$ at points along the perpendicular bisector and show that *E* decreases as $1/r^4$. Measure *r* from the -2Q charge

assume
$$r >> l$$
 [Answer: $-\frac{3Q\ell^2}{4\pi\varepsilon_0 r^4}$]